The aim of the present study was to evaluate the fatigue to cyclic and static resistance of indirect restorations with different preparation designs made either of lithium disilicate (LS) or… Click to show full abstract
The aim of the present study was to evaluate the fatigue to cyclic and static resistance of indirect restorations with different preparation designs made either of lithium disilicate (LS) or polymer-infiltrated ceramic network (PICN). Eighty-four (n = 84) molars were chosen, endodontically treated, and prepared with standardized MOD cavities. The molars were randomly divided into 6 study groups (n = 14) taking into account the “preparation design’’ (occlusal veneer with 1.2 mm occlusal thickness; overlay with 1.6 mm occlusal thickness; adhesive crown with 2 mm occlusal thickness) and the “CAD/CAM material’’ (E-max CAD, Ivoclar vivadent; Vita Enamic, Vita). A fatigue test was conducted with a chewing simulator set at 50 N for 1,500,000 cycles. Fracture resistance was assessed using a universal testing machine with a 6 mm diameter steel sphere applied to the specimens at a constant speed of 1 mm/min. A SEM analysis before the fracture test was performed to visually analyze the tooth-restoration margins. A statistical analysis was performed with a two-way ANOVA and a post-hoc pairwise comparison was performed using the Tukey test. The two-way ANOVA test showed that both the preparation design factor (p = 0.0429) and the CAD/CAM material factor (p = 0.0002) had a significant influence on the fracture resistance of the adhesive indirect restorations. The interaction between the two variables did not show any significance (p = 0.8218). The occlusal veneer had a lower fracture resistance than the adhesive crown (p = 0.042) but not lower than the overlay preparation (p = 0.095). LS was more resistant than PICN (p = 0.002). In conclusion, in the case of endodontically treated teeth, overlay preparation seems to be a valid alternative to the traditional full crown preparation, while occlusal veneers should be avoided in restoring non-vital molars with a high loss of residual tooth structure. LS material is more resistant compared to PICN.
               
Click one of the above tabs to view related content.