LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Amphiphilic Molecular Brushes with Regular Polydimethylsiloxane Backbone and Poly-2-isopropyl-2-oxazoline Side Chains. 3. Influence of Grafting Density on Behavior in Organic and Aqueous Solutions

Photo from wikipedia

Regular and irregular molecular brushes with polydimethylsiloxane backbone and poly-2-isopropyl-2-oxazoline side chains have been synthesized. Prepared samples differed strongly in the side chain grafting density, namely, in the ratio of… Click to show full abstract

Regular and irregular molecular brushes with polydimethylsiloxane backbone and poly-2-isopropyl-2-oxazoline side chains have been synthesized. Prepared samples differed strongly in the side chain grafting density, namely, in the ratio of the lengths of spacer between the grafting points and the side chains. The hydrodynamic properties and molecular conformation of the synthesized grafted copolymers and their behavior in aqueous solutions on heating were studied by the methods of molecular hydrodynamics and optics. It was found that the regularity and the grafting density do not affect the molecular shape of the studied samples of molecular brushes in the selective solvent. On the contrary, the grafting density is one of the most important factors determining the thermoresponsivity of grafted copolymers. It was shown that in analyzing self-organization and LCST values in aqueous solutions of poly-2-isopropyl-2-oxazolines with complex architecture, many factors should be considered. First is the molar fraction of the hydrophobic fragment and the intramolecular density. It was found that molar mass is not a factor that greatly affects the phase transition temperature of poly-2-isopropyl-2-oxazolines solutions at a passage from one molecular architecture to another.

Keywords: aqueous solutions; density; poly isopropyl; side chains; grafting density; molecular brushes

Journal Title: Polymers
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.