LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Attapulgite Nanorod-Incorporated Polyimide Membrane for Enhanced Gas Separation Performance

Photo from wikipedia

Polyimide (PI) membrane is an ideal gas separation material due to its advantages of high designability, good mechanical properties and easy processing; however, it has equilibrium limitations in gas selectivity… Click to show full abstract

Polyimide (PI) membrane is an ideal gas separation material due to its advantages of high designability, good mechanical properties and easy processing; however, it has equilibrium limitations in gas selectivity and permeability. Introducing nanoparticles into polymers is an effective method to improve the gas separation performance. In this work, nano-attapulgite (ATP) functionalized with KH-550 silane coupling agent was used to prepare polyimide/ATP composite membranes by in-situ polymerization. A series of characterization and performance tests were carried out on the membranes. The obtained results suggested a significant increase in gas permeability upon increasing the ATP content. When the content of ATP was 50%, the gas permeability of H2, He, N2, O2, CH4, and CO2 reached 11.82, 12.44, 0.13, 0.84, 0.10, and 4.64 barrer, which were 126.87%, 119.40%, 160.00%, 140.00%, 150.00% and 152.17% higher than that of pure polyimide, respectively. No significant change in gas selectivity was observed. The gas permeabilities of membranes at different pressures were also investigated. The inefficient polymer chain stacking and the additional void volume at the interface between the polymer and TiO2 clusters leaded to the increase of the free volume, thus improving the permeability of the polyimide membrane. As a promising separation material, the PI/ATP composite membrane can be widely used in gas separation industry.

Keywords: gas; gas separation; polyimide membrane; separation; performance

Journal Title: Polymers
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.