Despite similar material composition and insulation application, the alternating current (AC) cross-linked polyethylene (XLPE) and direct current (DC) XLPE materials cannot replace each other due to different voltage forms. Herein,… Click to show full abstract
Despite similar material composition and insulation application, the alternating current (AC) cross-linked polyethylene (XLPE) and direct current (DC) XLPE materials cannot replace each other due to different voltage forms. Herein, this work presents a systematical investigation into the effects of thermal aging on the material composition and properties of 500 kV-level commercial AC XLPE and DC XLPE materials. A higher content of antioxidants in the AC XLPE than in the DC XLPE was experimentally demonstrated via thermal analysis technologies, such as oxidation-induced time and oxidation-induced temperature. Retarded thermal oxidation and suppression of space charge effects were observed in thermally aged AC XLPE samples. On the other hand, the carbonyl index of DC XLPE dramatically rose when thermal aging was up to 168 h. The newly generated oxygen-containing groups provided deep trapping sites (~0.95 eV) for space charges and caused severe electric field distortion (120%) under −50 kV/mm at room temperature in the aged DC XLPE samples. For the unaged XLPE materials, the positive space charge packets were attributed to the residue crosslinking byproducts, even after being treated in vacuum at 70 °C for 24 h. Thus, it was reasoned that the DC XLPE material had a lower crosslinking degree to guarantee fewer crosslinking byproducts. This work offers a simple but accurate method for evaluating thermal oxidation resistance and space charge properties crucial for developing high-performance HVDC cable insulation materials.
               
Click one of the above tabs to view related content.