LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Experimental Study on the Bending and Shear Behaviors of Chinese Paulownia Wood at Elevated Temperatures

Photo from wikipedia

Chinese Paulownia wood has been extensively used in the construction of timber buildings and lightweight sandwich structures. However, the bending and shear behaviors at elevated temperatures were not well understood.… Click to show full abstract

Chinese Paulownia wood has been extensively used in the construction of timber buildings and lightweight sandwich structures. However, the bending and shear behaviors at elevated temperatures were not well understood. A total of 162 specimens were tested to investigate the bending, tangential shear, and radial shear performances of Chinese Paulownia wood under temperatures from 20 to 220 °C. It was found that the bending specimens exhibited ductile failure due to the progressive damage after reaching the peak load, while the tangential and radial shear specimens exhibited brittle shear failure along the shear plane. The elevated temperatures had limited effects on the failure modes. Under the same temperature, the retention rate of the modulus of elasticity is significantly higher than that of the modulus of rupture. Moreover, the bending strength, tangential shear strength, and radial shear strength generally and nonlinearly decreased with the increasing temperature. The EN 1995-1-2 design curve for the shear strength of wood at elevated temperatures is conservative for both the tangential and radial shear specimens. However, the design curve may not be adopted to estimate the tangential shear strength at temperatures higher than 220 °C.

Keywords: strength; chinese paulownia; elevated temperatures; wood; paulownia wood; bending shear

Journal Title: Polymers
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.