LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Low Power Consuming Mode Switch Based on Hybrid-Core Vertical Directional Couplers with Graphene Electrode-Embedded Polymer Waveguides

Photo from wikipedia

We propose a mode switch based on hybrid-core vertical directional couplers with an embedded graphene electrode to realize the switching function with low power consumption. We designed the device with… Click to show full abstract

We propose a mode switch based on hybrid-core vertical directional couplers with an embedded graphene electrode to realize the switching function with low power consumption. We designed the device with Norland Optical Adhesive (NOA) material as the guide wave cores and epoxy polymer material as cladding to achieve a thermo-optic switching for the E11, E21 and E12 modes, where monolayer graphene served as electrode heaters. The device, with a length of 21 mm, had extinction ratios (ERs) of 20.5 dB, 10.4 dB and 15.7 dB for the E21, E12 and E11 modes, respectively, over the C-band. The power consumptions of three electric heaters were reduced to only 3.19 mW, 3.09 mW and 2.97 mW, respectively, and the response times were less than 495 µs, 486 µs and 498 µs. Additionally, we applied such a device into a mode division multiplexing (MDM) transmission system to achieve an application of gain equalization of few-mode amplification among guided modes. The differential modal gain (DMG) could be optimized from 5.39 dB to 0.92 dB over the C-band, together with the characteristic of polarization insensitivity. The proposed mode switch can be further developed to switch or manipulate the attenuation of the arbitrary guided mode arising in the few-mode waveguide.

Keywords: mode switch; power; switch based; hybrid core; based hybrid; mode

Journal Title: Polymers
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.