LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Preparation of Anti-Bacterial Cellulose Nanofibrils (CNFs) from Bamboo Pulp in a Reactable Citric Acid–Choline Chloride Deep Eutectic Solvent

Photo by chuttersnap from unsplash

In this study, bamboo pulp was simultaneously fibrillated and esterified in one-pot citric acid–choline chloride deep eutectic solvent treatment. The results indicated that increasing the temperature and time promoted esterification,… Click to show full abstract

In this study, bamboo pulp was simultaneously fibrillated and esterified in one-pot citric acid–choline chloride deep eutectic solvent treatment. The results indicated that increasing the temperature and time promoted esterification, yielding 0.19 to 0.35 mmol/g of the carboxyl group in CNFs. However, increasing the temperature and time resulted in decreases in yields and the diameter of CNFs from 84.5 to 66.6% and 12 to 4 nm, respectively. Analysis of the anti-bacterial activities of CNFs suggested that the high carboxyl group content corresponded to the effective inhibition of Escherichia coli and Staphylococcus aureus Taking yield, size, carboxyl group content, and anti-bacterial activate into consideration, treatment at 120 °C for 24 h was the optimal condition, yielding 76.0% CNF with 0.31 mmol/g carboxyl groups with a diameter of 8 nm and the inhibition fof E. coli (81.7%) and S. aureus (63.1%). In addition, effect of different CNFs on characteristics of polyvinyl alcohol (PVA) films were investigated. The results indicated that CNF obtained from the optimal condition was a favorable additive for the composite film, which enhanced (74%) the tensile strength of composite film compared with the pure PVA film due to its considerable size and carboxyl group content. However, the composite films did not show an anti-bacterial activate as CNF.

Keywords: anti bacterial; bamboo pulp; acid choline; carboxyl; choline chloride; citric acid

Journal Title: Polymers
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.