LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Geopolymer Concrete with Lightweight Fine Aggregate: Material Performance and Structural Application

Photo from wikipedia

Limited information and data are available on the material and structural performance of GC incorporating lightweight fine aggregate. In this research, three types of lightweight fine materials were utilized to… Click to show full abstract

Limited information and data are available on the material and structural performance of GC incorporating lightweight fine aggregate. In this research, three types of lightweight fine materials were utilized to partially replace sand volume of GC. These lightweight materials were rubber, vermiculite, or lightweight expanded clay aggregate (LECA) and they were used in contents of 20%, 40%, 60%, and 100%. The variables were applied to better investigate the efficiency of each lightweight material in GC and to recommend GC mixes for structural applications. The concrete workability, compressive strength, indirect tensile strength, freezing and thawing performance, and impact resistance were measured in this study. In addition, three reinforced concrete slabs were made from selected mixes with similar compressive strength of 32 MPa and then tested under a 4-point bending loading regime. The results showed that using LECA as sand replacement in GC increased its compressive strength at all ages and all replacement ratios. Compared with the control GC mix, using 60% LECA increased the compressive strength by up to 44%, 39%, and 27%, respectively at 3, 7, and 28 days. The slabs test showed that partial or full replacement of GC sand adversely affected the shear resistance of concrete and caused premature failure of slabs. The slab strength and deflection capacities decreased by 9% and 30%, respectively when using rubber, and by 23% and 59%, respectively when using LECA, compared with control GC slab. The results indicated the applicability of GC mix with 60% LECA in structures subjected to axial loads. However, rubber would be the best lightweight material to recommend for resisting impact and flexural loads.

Keywords: strength; lightweight fine; concrete; compressive strength; fine aggregate; performance

Journal Title: Polymers
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.