Desertification, one of the world’s most pressing serious environmental problems, poses a serious threat to human survival as well as to social, economic, and political development. Nevertheless, the development of… Click to show full abstract
Desertification, one of the world’s most pressing serious environmental problems, poses a serious threat to human survival as well as to social, economic, and political development. Nevertheless, the development of environmentally friendly sand-fixing materials is still a tremendous challenge for preventing desertification. This study developed a bio-based attapulgite copolymer (BAC) by grafting copolymerization of attapulgite, starch, sulfomethyl lignin, and biological mycelia. Water retention, anti-water erosion, and anti-wind erosion tests were conducted to assess the application performance of the BAC. Scanning electron microscopy (SEM) was then employed to determine the morphology of the attapulgite and attapulgite graft copolymer sand-fixing material (CSF). The intermolecular interactions in CSF were revealed using Fourier transform infrared spectrum (FT-IR). The role of sand-fixing materials on soil physicochemical properties and seed germination was then discussed based on the germination rate experiments, and 16S rDNA sequencing technology was used to analyze the differences in microbial communities in each sample group. The results demonstrated that the BAC not only has superior application properties and significantly increased seed germination (95%), but also promotes soil development by regulating the structure of the soil microbial community. This work provides novel insights into the design of sand-fixing material for preventing desertification while improving soil fertility.
               
Click one of the above tabs to view related content.