LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Efficient Synthesis of High-Performance Anion Exchange Membranes by Applying Clickable Tetrakis(dialkylamino)phosphonium Cations

Photo by souravdnath1 from unsplash

Tetrakis(dialkylamino)phosphonium (TKDAAP) compounds exhibit extraordinary base resistance, a prerequisite feature for high-performance anion exchange membranes (AEMs). It is, however, challenging to synthesize a TKDAAP compound with reactive functionality that can… Click to show full abstract

Tetrakis(dialkylamino)phosphonium (TKDAAP) compounds exhibit extraordinary base resistance, a prerequisite feature for high-performance anion exchange membranes (AEMs). It is, however, challenging to synthesize a TKDAAP compound with reactive functionality that can be used to link the cation to a polymer backbone. In this study, two TKDAAP compounds with alkyne functionality were synthesized and incorporated into an azide-modified SBS triblock copolymer backbone via Cu(I)-catalyzed alkyne–azide cycloaddition (CuAAC) “click” chemistry. The properties of the resulting AEMs were characterized. It was found that (1) the triazole linker between the cation and the polymer backbone was stable under alkaline conditions; (2) varying the substituents of TKDAAP compounds could dramatically alter the stability; and (3) increasing the hydrophilicity of the AEM was an efficient way to enhance its ionic conductivity. Using clickable TKDAAP compounds makes it easy to combine various cations into polymer backbones with adjustable cation content, thus potentially leading to an efficient way to screen a wide variety of polyelectrolyte structures to identify the most promising candidates for high-performance AEMs.

Keywords: tetrakis dialkylamino; dialkylamino phosphonium; tkdaap compounds; performance anion; high performance; performance

Journal Title: Polymers
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.