LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Multiphysics Modeling Framework for Soft PVC Gel Sensors with Experimental Comparisons

Photo from wikipedia

Polyvinyl chloride (PVC) gels have recently been found to exhibit mechanoelectrical transduction or sensing capabilities under compressive loading applications. This phenomenon is not wholly understood but has been characterized as… Click to show full abstract

Polyvinyl chloride (PVC) gels have recently been found to exhibit mechanoelectrical transduction or sensing capabilities under compressive loading applications. This phenomenon is not wholly understood but has been characterized as an adsorption-like phenomena under varying amounts and types of plasticizers. A different polymer lattice structure has also been tested, thermoplastic polyurethane, which showed similar sensing characteristics. This study examines mechanical and electrical properties of these gel sensors and proposes a mathematical framework of the underlying mechanisms of mechanoelectrical transduction. COMSOL Multiphysics is used to show solid mechanics characteristics, electrostatic properties, and transport of interstitial plasticizer under compressive loading applications. The solid mechanics takes a continuum mechanics approach and includes a highly compressive Storakers material model for compressive loading applications. The electrostatics and transport properties include charge conservation and a Langmuir adsorption migration model with variable diffusion properties based on plasticizer properties. Results show both plasticizer concentration gradient as well as expected voltage response under varying amounts and types of plasticizers. Experimental work is also completed to show agreeance with the modeling results.

Keywords: gel sensors; loading applications; pvc; framework; compressive loading; mechanics

Journal Title: Polymers
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.