LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Asymmetric Monomer Design Enables Structural Control of M(Salen)-Type Polymers

Photo by ldxcreative from unsplash

Conductive and electrochemically active polymers consisting of Salen-type metal complexes as building blocks are of interest for energy storage and conversion applications. Asymmetric monomer design is a powerful tool for… Click to show full abstract

Conductive and electrochemically active polymers consisting of Salen-type metal complexes as building blocks are of interest for energy storage and conversion applications. Asymmetric monomer design is a powerful tool for fine-tuning the practical properties of conductive electrochemically active polymers but has never been employed for polymers of M(Salen)]. In this work, we synthesize a series of novel conducting polymers composed of a nonsymmetrical electropolymerizable copper Salen-type complex (Cu(3-MeOSal–Sal)en). We show that asymmetrical monomer design provides easy control of the coupling site via polymerization potential control. With in-situ electrochemical methods such as UV-vis-NIR (ultraviolet-visible-near infrared) spectroscopy, EQCM (electrochemical quartz crystal microbalance), and electrochemical conductivity measurements, we elucidate how the properties of these polymers are defined by chain length, order, and cross-linking. We found that the highest conductivity in the series has a polymer with the shortest chain length, which emphasizes the importance of intermolecular iterations in polymers of [M(Salen)].

Keywords: asymmetric monomer; monomer design; control; salen type

Journal Title: Polymers
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.