In this work, an attempt was made to improve the mechanical performance of glass fibre-reinforced polymer composites by adding multi-walled carbon nanotubes (MWCNT) and graphene nanoparticles (GNP) and their hybrid… Click to show full abstract
In this work, an attempt was made to improve the mechanical performance of glass fibre-reinforced polymer composites by adding multi-walled carbon nanotubes (MWCNT) and graphene nanoparticles (GNP) and their hybrid combination at different weight fractions (0.1 to 0.3%). Composite laminates with three different configurations (unidirectional [0°]12, cross-ply [0°/90°]3s, and angle-ply [±45°]3s) were manufactured using the compression moulding method. Characterisation tests such as quasistatic compression, flexural, and interlaminar shear strength properties were carried out per ASTM standards. Failure analysis was carried out through optical and scanning electron microscopy (SEM). The experimental results showed a substantial enhancement with the 0.2% hybrid combination of MWCNTs, and GNPs showed 80% and 74% in the compressive strength and compressive modulus, respectively. Similarly, flexural strength, modulus, and interlaminar shear strength (ILSS) increased by 62%, 205%, and 298%, respectively, compared to neat glass/epoxy resin composite. Beyond the 0.2% of fillers, the properties started to degrade due to the agglomeration of MWCNTs/GNPs. The order of layups per mechanical performance was UD, followed by CP and AP.
               
Click one of the above tabs to view related content.