LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ag–Cellulose Hybrid Filler for Boosting the Power Output of a Triboelectric Nanogenerator

Photo from wikipedia

The triboelectric nanogenerator (TENG) is a newly developed energy harvesting technology that can convert mechanical energy into electricity. The TENG has received extensive attention due to its potential applications in… Click to show full abstract

The triboelectric nanogenerator (TENG) is a newly developed energy harvesting technology that can convert mechanical energy into electricity. The TENG has received extensive attention due to its potential applications in diverse fields. In this work, a natural based triboelectric material has been developed from a natural rubber (NR) filled with cellulose fiber (CF) and Ag nanoparticles. Ag nanoparticles are incorporated into cellulose fiber (CF@Ag) and are used as a hybrid filler material for the NR composite to enhance the energy conversion efficiency of TENG. The presence of Ag nanoparticles in the NR-CF@Ag composite is found to improve the electrical power output of the TENG by promoting the electron donating ability of the cellulose filler, resulting in the higher positive tribo-polarity of NR. The NR-CF@Ag TENG shows significant improvement in the output power up to five folds compared to the pristine NR TENG. The findings of this work show a great potential for the development of a biodegradable and sustainable power source by converting mechanical energy into electricity.

Keywords: power output; hybrid filler; power; triboelectric nanogenerator; filler

Journal Title: Polymers
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.