In this work, we have developed novel beads based on carboxymethyl cellulose (CMC) encapsulated copper oxide-titanium oxide (CuO-TiO2) nanocomposite (CMC/CuO-TiO2) via Al+3 cross-linking agent. The developed CMC/CuO-TiO2 beads were applied… Click to show full abstract
In this work, we have developed novel beads based on carboxymethyl cellulose (CMC) encapsulated copper oxide-titanium oxide (CuO-TiO2) nanocomposite (CMC/CuO-TiO2) via Al+3 cross-linking agent. The developed CMC/CuO-TiO2 beads were applied as a promising catalyst for the catalytic reduction of organic and inorganic contaminants; nitrophenols (NP), methyl orange (MO), eosin yellow (EY) and potassium hexacyanoferrate (K3[Fe(CN)6]) in the presence of reducing agent (NaBH4). CMC/CuO-TiO2 nanocatalyst beads exhibited excellent catalytic activity in the reduction of all selected pollutants (4-NP, 2-NP, 2,6-DNP, MO, EY and K3[Fe(CN)6]). Further, the catalytic activity of beads was optimized toward 4-nitrophenol with varying its concentrations and testing different concentrations of NaBH4. Beads stability, reusability, and loss in catalytic activity were investigated using the recyclability method, in which the CMC/CuO-TiO2 nanocomposite beads were tested several times for the reduction of 4-NP. As a result, the designed CMC/CuO-TiO2 nanocomposite beads are strong, stable, and their catalytic activity has been proven.
               
Click one of the above tabs to view related content.