LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Multiaxial Fracture of Ecoflex Skin with Different Shore Hardness for Morphing Wing Application

Photo by kellysikkema from unsplash

The use of elastomer-based skins in morphing wings has become increasingly popular due to their remarkable stretchability and mechanical properties. However, the possibility of the skin fracturing during multiaxial stretching… Click to show full abstract

The use of elastomer-based skins in morphing wings has become increasingly popular due to their remarkable stretchability and mechanical properties. However, the possibility of the skin fracturing during multiaxial stretching remains a significant design challenge. The propagation of cracks originating from flaws or notches in the skin can lead to the specimen breaking into two parts. This paper presents an experimental study aimed at comprehensively evaluating crack propagation direction, stretchability, and fracture toughness of silicone-based elastomeric skin (Ecoflex) for morphing wing applications, using varying Shore hardness values (10, 30, and 50). The findings show that the lower Shore hardness value of 10 exhibits a unique Sideways crack propagation characteristic, which is ideal for morphing skins due to its high stretchability, low actuation load, and high fracture toughness. The study also reveals that the Ecoflex 10 is suitable for use in span morphing, with a fracture toughness of approximately 1.1 kJ/m2 for all thicknesses at a slower strain rate of 0.4 mm/min. Overall, this work highlights the superior properties of Ecoflex 10 and its potential use as a morphing skin material, offering a groundbreaking solution to the challenges faced in this field.

Keywords: shore hardness; fracture; fracture toughness; morphing wing

Journal Title: Polymers
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.