LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Novel Approach for Simulation and Optimization of Rubber Vulcanization

Photo from wikipedia

The kinetic model, encompassing the curing and reversion phenomena of the NR/SBR rubber vulcanization process, was developed by means of the finite element method simultaneously with heat transfer equations, including… Click to show full abstract

The kinetic model, encompassing the curing and reversion phenomena of the NR/SBR rubber vulcanization process, was developed by means of the finite element method simultaneously with heat transfer equations, including heat generation due to curing reactions. The vulcanization simulation was conducted for three spheres of different diameters (1, 5 and 10 cm) and two rubber wheels, one of which was a commercial product of the rubber industry. The proposed advanced simulation model, based on products’ two-dimensional axisymmetry, includes cooling after vulcanization, during which the crosslinking reactions continue to take place as a result of the products’ heated interiors. As a criterion for removing the product from the mold, an average vulcanization degree of 0.9 was set, whereby, during cooling, the vulcanization degree increases, due to crosslinking reactions. Based on the minimal difference between the maximal and minimal vulcanization degrees, which did not exceed a value of 0.0142, the optimal process parameters for each product were determined, achieving homogeneity and obtaining high-quality rubber products, while simultaneously ensuring a more efficient vulcanization process and enhanced cost effectiveness for the rubber industry.

Keywords: rubber vulcanization; vulcanization; novel approach; approach simulation; rubber

Journal Title: Polymers
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.