LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fracture Resistance Analysis of CAD/CAM Interim Fixed Prosthodontic Materials: PMMA, Graphene, Acetal Resin and Polysulfone

Photo from wikipedia

The aim of this study was to evaluate and compare the fracture resistance of temporary restorations made of polymethylmethacrylate (PMMA), graphene-modified PMMA (GRA), acetal resin (AR) and polysulfone (PS) obtained… Click to show full abstract

The aim of this study was to evaluate and compare the fracture resistance of temporary restorations made of polymethylmethacrylate (PMMA), graphene-modified PMMA (GRA), acetal resin (AR) and polysulfone (PS) obtained by a subtractive technique (milling) using a computer-aided design and manufacturing (CAD/CAM) system of a three-unit fixed dental prosthesis (FDP). Methods: Four groups of ten samples were fabricated for each material. Each specimen was characterized by a compression test on a universal testing machine, all specimens were loaded to fracture and the value in Newtons (N) was recorded by software connected to the testing machine. The fracture mode was evaluated on all samples using a stereomicroscope. Results: There were statistically significant differences (p value < 0.005) between PMMA and the other three materials (PMMA: 1302.71 N; GRA: 1990.02 N; RA: 1796.20 N; PS: 2234.97). PMMA presented a significantly lower value than the other materials, and PS showed the highest value. GRA and RA presented a similar range of values but they were still higher than those of PMMA. Conclusions: GRA, RA and PS are presented as valid options within the range of interim milled restorative materials and as alternatives to PMMA.

Keywords: fracture; fracture resistance; resin polysulfone; cad cam; pmma graphene; acetal resin

Journal Title: Polymers
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.