LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Reinforcement of Nanocomposite Hydrogel with Dialdehyde Cellulose Nanofibrils via Physical and Double Network Crosslinking Synergies

Photo from wikipedia

Preparation of tough and high-strength hydrogels for water plugging in oil fields with an easy-scalable method is still considered to be a challenge. In this study, dialdehyde cellulose nanofibril (DA-CNF)… Click to show full abstract

Preparation of tough and high-strength hydrogels for water plugging in oil fields with an easy-scalable method is still considered to be a challenge. In this study, dialdehyde cellulose nanofibril (DA-CNF) prepared by sodium periodate oxidation, polyamine, 2-acrylamido-2-methylpropane sulfonic acid (AMPS) with sulfonate groups and Acrylamide (AM) as raw materials, CNF reinforced nanocomposite hydrogels were prepared in one step by in-situ polymerization. The tensile strength, and texture stability of the obtained nanocomposite hydrogel were determined. The results showed that the tensile strength and toughness of the obtained nanocomposite hydrogel increased four times compared with control sample due to physical and chemical double crosslinking synergies. Moreover, the texture intensity of DA-CNFs reinforced hydrogel still maintains high stability and strength performance under high salinity conditions. Therefore, DA-CNF reinforced hydrogel has potential application value in both normal and high-salinity environments in oil recovery.

Keywords: strength; crosslinking synergies; dialdehyde cellulose; nanocomposite hydrogel; reinforcement nanocomposite

Journal Title: Polymers
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.