LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Development and Characterization of New Energetic Composites Based on HNTO/AN Co-Crystal and Nitro-Cellulosic Materials

Photo from wikipedia

To develop advanced cellulose-based energetic composites, new types of high-energy-density formulations containing hydrazine 3-nitro-1,2,4-triazol-5-one (HNTO)/ammonium nitrate (AN) cocrystals combined with nitrocellulose or nanostructured cellulose nitrate (NC and NMCC) were experimentally… Click to show full abstract

To develop advanced cellulose-based energetic composites, new types of high-energy-density formulations containing hydrazine 3-nitro-1,2,4-triazol-5-one (HNTO)/ammonium nitrate (AN) cocrystals combined with nitrocellulose or nanostructured cellulose nitrate (NC and NMCC) were experimentally characterized. The prepared energetic formulations were analyzed in terms of their physicochemical properties, mechanical sensitivities, structural features, and thermal behavior. Their heats of combustion and theoretical energetic performance were assessed as well. Experimental results exhibited the inherent characteristics of the designed NC@HNTO/AN and NMCC@HNTO/AN, including improved density, specific impulse, and impact sensitivity compared to their raw compounds. Besides that, thermo-kinetic findings revealed that the as-prepared insensitive and high-energy-density composites undergo two exothermic decomposition processes, and that NC@HNTO/AN has higher thermal activity. The present study demonstrated the outstanding characteristics of the new composites and could serve as a reference for developing more advanced cellulose-based energetic formulations.

Keywords: development characterization; characterization new; energetic composites; composites based; new energetic; based hnto

Journal Title: Polymers
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.