In the field of quantum technology, there has been a growing interest in fully integrated systems that employ single photons due to their potential for high performance and scalability. Here,… Click to show full abstract
In the field of quantum technology, there has been a growing interest in fully integrated systems that employ single photons due to their potential for high performance and scalability. Here, a simple method is demonstrated for creating on-chip 3D printed polymer waveguide-coupled single-photon emitters based on colloidal quantum dots (QDs). By using a simple low-one photon absorption technique, we were able to create a 3D polymeric crossed-arc waveguide structure with a bright QD on top. These waveguides can conduct both excitation laser and emitted single photons, which facilitates the characterization of single-photon signals at different outputs with a conventional confocal scanning system. To optimize the guiding effect of the polymeric waveguide structures, comprehensive 3D finite-difference time-domain simulations were performed. Our method provides a straightforward and cost-effective way to integrate high-performance single-photon sources with on-chip photonic devices, enabling scalable and versatile quantum photonic circuits for various applications.
               
Click one of the above tabs to view related content.