The present work focuses on the pultrusion of pre-impregnated glass-reinforced polypropylene tapes. An appositely designed laboratory-scale pultrusion line, consisting of a heating/forming die and a cooling die, was used. The… Click to show full abstract
The present work focuses on the pultrusion of pre-impregnated glass-reinforced polypropylene tapes. An appositely designed laboratory-scale pultrusion line, consisting of a heating/forming die and a cooling die, was used. The temperature of the advancing materials and the pulling force resistance were measured by using thermocouples embedded in the pre-preg tapes and a load cell. From the analysis of the experimental outcomes, we gained insight into the nature of the material–machinery interaction and the transitions of the polypropylene matrix. The cross-section of the pultruded part was analyzed by microscope observation to evaluate the distribution of the reinforcement inside the profile and the presence of internal defects. Three-point bending and tensile testing were conducted to assess the mechanical properties of the thermoplastic composite. The pultruded product showed good quality, with an average fiber volume fraction of 23% and a limited presence of internal defects. A non-homogenous distribution of fibers in the cross-section of the profile was observed, probably due to the low number of tapes used in the present experimentation and their limited compaction. A tensile modulus and a flexural modulus of 21.5 GPa and 15.0 GPa, respectively, were measured.
               
Click one of the above tabs to view related content.