LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

In Vitro Biocompatibility, Radiopacity, and Physical Property Tests of Nano-Fe3O4 Incorporated Poly-l-lactide Bone Screws

Photo by dancristianpaduret from unsplash

The aim of this study was to fabricate biodegradable poly-l-lactic acid (PLLA) bone screws containing iron oxide (Fe3O4) nanoparticles, which are radiopaque and 3D-printable. The PLLA composites were fabricated by… Click to show full abstract

The aim of this study was to fabricate biodegradable poly-l-lactic acid (PLLA) bone screws containing iron oxide (Fe3O4) nanoparticles, which are radiopaque and 3D-printable. The PLLA composites were fabricated by loading 20%, 30%, and 40% Fe3O4 nanoparticles into the PLLA. The physical properties, including elastic modulus, thermal properties, and biocompatibility of the composites were tested. The 20% nano-Fe3O4/PLLA composite was used as the material for fabricating the 3D-printed bone screws. The mechanical performance of the nano-Fe3O4/PLLA bone screws was evaluated by anti-bending and anti-torque strength tests. The tissue response and radiopacity of the nano-Fe3O4/PLLA bone screws were assessed by histologic and CT imaging studies using an animal model. The addition of nano-Fe3O4 increased the crystallization of the PLLA composites. Furthermore, the 20% nano-Fe3O4/PLLA composite exhibited the highest thermal stability compared to the other Fe3O4 proportions. The 3D-printed bone screws using the 20% nano-Fe3O4/PLLA composite provided excellent local tissue response. In addition, the radiopacity of the 20% nano-Fe3O4/PLLA screw was significantly better compared with the neat PLLA screw.

Keywords: fe3o4 plla; bone screws; nano fe3o4

Journal Title: Polymers
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.