To improve the reactivity of the soda lignin, an acid ionic liquid 1-butyl-3-mthylimidazolium chloride ([BMIM]Cl) was used as the catalyst and solvent to degrade the soda lignin through hydrogenolysis. Structural… Click to show full abstract
To improve the reactivity of the soda lignin, an acid ionic liquid 1-butyl-3-mthylimidazolium chloride ([BMIM]Cl) was used as the catalyst and solvent to degrade the soda lignin through hydrogenolysis. Structural elucidation of the lignin samples was conducted by using a combination of analytical methods including chemical analysis, ultraviolet spectrophotometry (UV spectrophotometry), Fourier transform infrared spectroscopy (FT-IR spectra), two-dimensional heteronuclear single quantum coherence nuclear magnetic resonance (2D-HSQC NMR) techniques, and gel permeation chromatography (GPC). The antioxidant activities of the lignin samples were evaluated using the diammonium 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS+) radical scavenging and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging methods. The degradation mechanism was proposed based on the characterization results. The optimal reaction condition was as follows: the concentration of [BMIM]Cl in the solution was 10 wt %, the hydrogen initial pressure was 3 MPa, and the solution was heated for 4 h at 90 °C. After the reaction, the total hydroxyl content of the soda lignin increased by 81.3%, while the phenolic hydroxyl content increased by 23.1%. At the same time, the weight-average molar mass of the soda lignin sample decreased from 8220 to 6450 g/mol with an improved antioxidant activity. In addition, approximately 56.7% of the β-O-4 linkages were degraded in the lreaction. The main effect of the acid ionic liquid [BMIM]C1 was related to the cleavage of β-O-4 linkages. This study has shown the potential of using the catalyzed soda lignin as a natural polymer antioxidant.
               
Click one of the above tabs to view related content.