LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Polyphilic Interactions as Structural Driving Force Investigated by Molecular Dynamics Simulation (Project 7)

Photo by vlisidis from unsplash

We investigated the effect of fluorinated molecules on dipalmitoylphosphatidylcholine (DPPC) bilayers by force-field molecular dynamics simulations. In the first step, we developed all-atom force-field parameters for additive molecules in membranes… Click to show full abstract

We investigated the effect of fluorinated molecules on dipalmitoylphosphatidylcholine (DPPC) bilayers by force-field molecular dynamics simulations. In the first step, we developed all-atom force-field parameters for additive molecules in membranes to enable an accurate description of those systems. On the basis of this force field, we performed extensive simulations of various bilayer systems containing different additives. The additive molecules were chosen to be of different size and shape, and they included small molecules such as perfluorinated alcohols, but also more complex molecules. From these simulations, we investigated the structural and dynamic effects of the additives on the membrane properties, as well as the behavior of the additive molecules themselves. Our results are in good agreement with other theoretical and experimental studies, and they contribute to a microscopic understanding of interactions, which might be used to specifically tune membrane properties by additives in the future.

Keywords: force field; molecular dynamics; interactions structural; polyphilic interactions; additive molecules; force

Journal Title: Polymers
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.