This paper shows the effects of the COVID-19 pandemic on energy markets. We estimate daily volatilities and correlations among energy commodities relying on a mixed-frequency approach that exploits information from… Click to show full abstract
This paper shows the effects of the COVID-19 pandemic on energy markets. We estimate daily volatilities and correlations among energy commodities relying on a mixed-frequency approach that exploits information from the number of weekly deaths related to COVID-19 in the United States. The mixed-frequency approach takes advantage of the MIxing-Data Sampling (MIDAS) methods. We compare our results to those obtained by employing two well-known models that do not account for the COVID-19 low-frequency variable, namely the Dynamic EquiCorrelation (DECO) and corrected Dynamic Conditional Correlation (cDCC). Moreover, we consider four possible specifications of the volatility: GARCH, GJR, GARCH-MIDAS, and Double-Asymmetric GARCH-MIDAS. The empirical results show that our approach is statistically superior to other models and represents a valuable methodology that can be used for risk managers, investors, and policy makers to assess the effects of the pandemic on spillovers effects in energy markets.
               
Click one of the above tabs to view related content.