Reinforcement Learning (RL) is gaining much research attention because it allows the system to learn from interacting with the environment. Yet, with all these successful applications, the application of RL… Click to show full abstract
Reinforcement Learning (RL) is gaining much research attention because it allows the system to learn from interacting with the environment. Yet, with all these successful applications, the application of RL in direct joint torque control without the help of an underlining dynamic model is not reported in the literature. This study presents a split network structure that enables successful training of RL to learn the direct torque control for trajectory following a six-axis articulated robot without prior knowledge of the dynamic robot model. The training took a very long time to converge. However, we were able to show the successful control of four different trajectories without needing an accurate dynamics model and complex inverse kinematics computation. To show the RL-based control’s effectiveness, we also compare the RL control with the Model Predictive Control (MPC), another popular trajectory control method. Our results show that while the MPC achieves smoother and more accurate control, it does not automatically treat the singularity. In addition, it requires complex inverse dynamics calculations. On the other hand, the RL controller instinctively avoided the violent action around the singularities.
               
Click one of the above tabs to view related content.