This paper proposes a scheme that combines computer vision and multi-tasking processes to develop a small-scale smart agricultural machine that can automatically weed and perform variable rate irrigation within a… Click to show full abstract
This paper proposes a scheme that combines computer vision and multi-tasking processes to develop a small-scale smart agricultural machine that can automatically weed and perform variable rate irrigation within a cultivated field. Image processing methods such as HSV (hue (H), saturation (S), value (V)) color conversion, estimation of thresholds during the image binary segmentation process, and morphology operator procedures are used to confirm the position of the plant and weeds, and those results are used to perform weeding and watering operations. Furthermore, the data on the wet distribution area of surface soil (WDAS) and the moisture content of the deep soil is provided to a fuzzy logic controller, which drives pumps to perform variable rate irrigation and to achieve water savings. The proposed system has been implemented in small machines and the experimental results show that the system can classify plant and weeds in real time with an average classification rate of 90% or higher. This allows the machine to do weeding and watering while maintaining the moisture content of the deep soil at 80 ± 10% and an average weeding rate of 90%.
               
Click one of the above tabs to view related content.