LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hypertension Diagnosis with Backpropagation Neural Networks for Sustainability in Public Health

Photo from wikipedia

This paper presents the development of a multilayer feed-forward neural network for the diagnosis of hypertension, based on a population-based study. For the development of this architecture, several physiological factors… Click to show full abstract

This paper presents the development of a multilayer feed-forward neural network for the diagnosis of hypertension, based on a population-based study. For the development of this architecture, several physiological factors have been considered, which are vital to determining the risk of being hypertensive; a diagnostic system can offer a solution which is not easy to determine by conventional means. The results obtained demonstrate the sustainability of health conditions affecting humanity today as a consequence of the social environment in which we live, e.g., economics, stress, smoking, alcoholism, drug addiction, obesity, diabetes, physical inactivity, etc., which leads to hypertension. The results of the neural network-based diagnostic system show an effectiveness of 90%, thus generating a high expectation in diagnosing the risk of hypertension from the analyzed physiological data.

Keywords: diagnosis backpropagation; backpropagation neural; health; hypertension; diagnosis; hypertension diagnosis

Journal Title: Sensors
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.