LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Deep Learning-Based Quantitative Assessment of Melamine and Cyanuric Acid in Pet Food Using Fourier Transform Infrared Spectroscopy

Photo from wikipedia

Melamine and its derivative, cyanuric acid, are occasionally added to pet meals because of their nitrogen-rich qualities, leading to the development of several health-related issues. A nondestructive sensing technique that… Click to show full abstract

Melamine and its derivative, cyanuric acid, are occasionally added to pet meals because of their nitrogen-rich qualities, leading to the development of several health-related issues. A nondestructive sensing technique that offers effective detection must be developed to address this problem. In conjunction with machine learning and deep learning technique, Fourier transform infrared (FT-IR) spectroscopy was employed in this investigation for the nondestructive quantitative measurement of eight different concentrations of melamine and cyanuric acid added to pet food. The effectiveness of the one-dimensional convolutional neural network (1D CNN) technique was compared with that of partial least squares regression (PLSR), principal component regression (PCR), and a net analyte signal (NAS)-based methodology, called hybrid linear analysis (HLA/GO). The 1D CNN model developed for the FT-IR spectra attained correlation coefficients of 0.995 and 0.994 and root mean square error of prediction values of 0.090% and 0.110% for the prediction datasets on the melamine- and cyanuric acid-contaminated pet food samples, respectively, which were superior to those of the PLSR and PCR models. Therefore, when FT-IR spectroscopy is employed in conjunction with a 1D CNN model, it serves as a potentially rapid and nondestructive method for identifying toxic chemicals added to pet food.

Keywords: pet food; spectroscopy; cyanuric acid; melamine cyanuric

Journal Title: Sensors
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.