LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Omnidirectional Continuous Movement Method of Dual-Arm Robot in a Space Station

Photo by davidhofmann from unsplash

The burgeoning complexity of space missions has amplified the research focus on robots that are capable of assisting astronauts in accomplishing tasks within space stations. Nevertheless, these robots grapple with… Click to show full abstract

The burgeoning complexity of space missions has amplified the research focus on robots that are capable of assisting astronauts in accomplishing tasks within space stations. Nevertheless, these robots grapple with substantial mobility challenges in a weightless environment. This study proposed an omnidirectional continuous movement method for a dual-arm robot, inspired by the movement patterns of astronauts within space stations. On the basis of determining the configuration of the dual-arm robot, the kinematics and dynamics model of the robot during contact and flight phases were established. Thereafter, several constraints are determined, including obstacle constraints, prohibited contact area constraints, and performance constraints. An optimization algorithm based on the artificial bee colony algorithm was proposed to optimize the trunk motion law, contact point positions between the manipulators and the inner wall, as well as the driving torques. Through the real-time control of the two manipulators, the robot is capable of achieving omnidirectional continuous movement across various inner walls with complex structures while maintaining optimal comprehensive performance. Simulation results demonstrate the correctness of this method. The method proposed in this paper provides a theoretical basis for the application of mobile robots within space stations.

Keywords: continuous movement; movement; method; space; omnidirectional continuous; dual arm

Journal Title: Sensors
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.