LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Guided Wave Ultrasonic Testing for Crack Detection in Polyethylene Pipes: Laboratory Experiments and Numerical Modeling

Photo from wikipedia

The use of guided wave-based Ultrasonic Testing (UT) for monitoring Polyethylene (PE) pipes is mostly restricted to detecting defects in welded zones, despite its diversified success in monitoring metallic pipes.… Click to show full abstract

The use of guided wave-based Ultrasonic Testing (UT) for monitoring Polyethylene (PE) pipes is mostly restricted to detecting defects in welded zones, despite its diversified success in monitoring metallic pipes. PE’s viscoelastic behavior and semi-crystalline structure make it prone to crack formation under extreme loads and environmental factors, which is a leading cause of pipeline failure. This state-of-the-art study aims to demonstrate the potential of UT for detecting cracks in non-welded regions of natural gas PE pipes. Laboratory experiments were conducted using a UT system consisting of low-cost piezoceramic transducers assembled in a pitch-catch configuration. The amplitude of the transmitted wave was analyzed to study wave interaction with cracks of different geometries. The frequency of the inspecting signal was optimized through wave dispersion and attenuation analysis, guiding the selection of third- and fourth- order longitudinal modes for the study. The findings revealed that cracks with lengths equal to or greater than the wavelength of the interacting mode were more easily detectable, while smaller crack lengths required greater crack depths for detection. However, there were potential limitations in the proposed technique related to crack orientation. These insights were validated using a finite element-based numerical model, confirming the potential of UT for detecting cracks in PE pipes.

Keywords: crack; ultrasonic testing; guided wave; polyethylene pipes; pipes laboratory; wave

Journal Title: Sensors
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.