Mangosteen, or Garcinia mangostana L., has merged as an emerging fruit to be investigated due to its active compounds, especially xanthone derivatives such as α -mangostin (AM), γ-mangostin (GM), and… Click to show full abstract
Mangosteen, or Garcinia mangostana L., has merged as an emerging fruit to be investigated due to its active compounds, especially xanthone derivatives such as α -mangostin (AM), γ-mangostin (GM), and gartanin (GT). These compounds had been reported to exert some pharmacological activities, such as antioxidant and anti-inflammatory, therefore, the development of an analytical method capable of quantifying these compounds should be investigated. The aim of this study was to determine the correlation between FTIR spectra and HPLC chromatogram, combined with chemometrics for quantitative analysis of ethanolic extract of mangosteen. The ethanolic extract of mangosteen pericarp was prepared using the maceration technique, and the obtained extract was subjected to measurement using instruments of FTIR spectrophotometer at wavenumbers of 4000–650 cm−1 and HPLC, using a PDA detector at 281 nm. The data acquired were subjected to chemometrics analysis of partial least square (PLS) and principal component regression (PCR). The result showed that the wavenumber regions of 3700–2700 cm−1 offered a reliable method for quantitative analysis of GM with coefficient of determination (R2) 0.9573 in calibration and 0.8134 in validation models, along with RMSEC value of 0.0487% and RMSEP value 0.120%. FTIR spectra using the second derivatives at wavenumber 3700–663 cm−1 with coefficient of determination (R2) >0.99 in calibration and validation models, along with the lowest RMSEC value and RMSEP value, were used for quantitative analysis of GT and AM, respectively. It can be concluded that FTIR spectra combined with multivariate are accurate and precise for the analysis of xanthones.
               
Click one of the above tabs to view related content.