LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Docking-Based Virtual Screening and Molecular Dynamics Simulations of Quercetin Analogs as Enoyl-Acyl Carrier Protein Reductase (InhA) Inhibitors of Mycobacterium tuberculosis

Photo from wikipedia

The emergence of multidrug-resistant Mycobacterium tuberculosis (MTB) has become a major problem in treating tuberculosis (TB) and shows the need to develop new and efficient drugs for better TB control.… Click to show full abstract

The emergence of multidrug-resistant Mycobacterium tuberculosis (MTB) has become a major problem in treating tuberculosis (TB) and shows the need to develop new and efficient drugs for better TB control. This study aimed to use in silico techniques to discover potential inhibitors to the Enoyl-[acyl-carrier-protein] reductase (InhA), which controls mycobacterial cell wall construction. Initially, 391 quercetin analogs present in the KNApSAck_3D database were selected, filters were sequentially applied by docking-based virtual screening. After recategorizing the variables (bond energy prediction and molecular interaction, including hydrogen bond and hydrophobic bond), compounds C00013874, C00006532, and C00013887 were selected as hit ligands. These compounds showed great hydrophobic contributions, and for each hit ligand, 100 ns of molecular dynamic simulations were performed, and the binding free energy was calculated. C00013874 demonstrated the greatest capacity for the InhA enzyme inhibition with ΔGbind = −148.651 kcal/mol compare to NAD (native ligand) presented a ΔGbind = −87.570 kcal/mol. These data are preliminary studies and might be a suitable candidate for further experimental analysis.

Keywords: carrier protein; mycobacterium tuberculosis; acyl carrier; tuberculosis; enoyl acyl; inha

Journal Title: Scientia Pharmaceutica
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.