LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Stomatal Behavior of Cowpea Genotypes Grown Under Varying Moisture Levels

Photo by gohrhyyan from unsplash

Drought is a major limitation to crop productivity worldwide. Plants lose most of their water through stomata, thus making stomata an important organ in the control of transpiration and photosynthesis.… Click to show full abstract

Drought is a major limitation to crop productivity worldwide. Plants lose most of their water through stomata, thus making stomata an important organ in the control of transpiration and photosynthesis. This study assessed the stomatal behavior of four cowpea genotypes grown under four moisture levels under hot semi-arid conditions. Stomatal conductance (gs) was measured at 47, 54, 70 and 77 days after planting (DAP). Biomass and carbon isotope composition (δ13C) were also determined at flowering. Genotype and moisture level significantly influenced gs. Genotypes varied in gs at vegetative stages (47 and 54 DAP) only. TVu4607 had higher gs under severe drought conditions at both 47 and 54 DAP. On the other hand, moisture level influenced gs at 54 and 70 DAP only. Stomatal conductance was severely restricted in cowpea under both moderate and severe drought conditions as gs was mostly below the threshold 0.10 mol m−2 s−1. Relationships between: biomass and gs, and δ13C and gs were positive under severe drought only. The findings revealed that cowpea genotypes vary in gs under dry conditions and that the variation is more prominent at vegetative stage, suggesting that cowpea productivity in dry areas could be improved through selection of genotypes that maintain higher gs under dry conditions.

Keywords: genotypes grown; stomatal behavior; moisture; drought; moisture levels; cowpea genotypes

Journal Title: Sustainability
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.