Residential energy consumption accounts for the majority of building energy consumption. Physical factors and technological developments to address this problem have been researched continuously. However, physical improvements have limitations, and… Click to show full abstract
Residential energy consumption accounts for the majority of building energy consumption. Physical factors and technological developments to address this problem have been researched continuously. However, physical improvements have limitations, and there is a paradigm shift towards energy research based on occupant behavior. Furthermore, the rapid increase in the number of single-person households around the world is decreasing residential energy efficiency, which is an urgent problem that needs to be solved. This study prepared a large dataset for analysis based on the Korean Time Use Survey (KTUS), which provides behavioral data for actual occupants of single-person households, and energy usage pattern (EUP) types that were derived through K-modes clustering. The characteristics and energy consumption of each type of household were analyzed, and their relationships were examined. Finally, an EUP-type predictive model, with a prediction rate of 95.0%, was implemented by training a support vector machine, and an energy consumption information model based on a Gaussian process regression was provided. The results of this study provide useful basic data for future research on energy consumption based on the behaviors of occupants, and the method proposed in this study will also be applicable to other regions.
               
Click one of the above tabs to view related content.