LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Development of a New Method for the Quantitative Generation of an Artificial Joint Specimen with Specific Geometric Properties

Photo from wikipedia

A rock joint is a planar discontinuity that has significant influence on the mechanical and hydraulic characteristics of rock mass. Laboratory experiments are often conducted on a joint to investigate… Click to show full abstract

A rock joint is a planar discontinuity that has significant influence on the mechanical and hydraulic characteristics of rock mass. Laboratory experiments are often conducted on a joint to investigate and provide fundamental information for rock mass analysis. Although joint roughness and mechanical aperture exert great effects on the experimental results, controlling them in quantitative manner is quite complicated and consumptive in terms of specimen preparation. A new and simple method for the quantitative generation of the joint specimen was proposed in this study. Based on random midpoint displacement method, a joint specimen with a void space inside was generated. Parametric studies for the roughness and mechanical aperture were carried out, and as a result, the two joint properties could be controlled by manipulating input parameters of random midpoint displacement method. In order to validate the proposed method, two joint specimens, which had different levels of roughness and aperture, were generated and printed. Surface coordinates of the specimens were obtained by a 3D laser scanner, and calculated to make a comparison between the target values and the estimated values. Results showed that the method was capable of generating joint specimens with satisfactory precision.

Keywords: quantitative generation; joint specimen; method; development new; method quantitative

Journal Title: Sustainability
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.