Regional environmental risk (RER) denotes potential threats to the natural environment, human health and socioeconomic development caused by specific risks. It is valuable to assess long-term RER in coastal areas… Click to show full abstract
Regional environmental risk (RER) denotes potential threats to the natural environment, human health and socioeconomic development caused by specific risks. It is valuable to assess long-term RER in coastal areas with the increasing effects of global change. We proposed a new approach to assess coastal RER considering spatial factors using principal component analysis (PCA) and used a future land use simulation (FLUS) model to project future RER scenarios considering the impact of sea level rise (SLR). In our study, the RER status was classified in five levels as highest, high, medium, low and lowest. We evaluated the 30 m × 30 m gridded spatial pattern of the long-term RER at Ningbo of China by assessing its 1975–2015 history and projecting this to 2020–2050. Our results show that RER at Ningbo has increased substantially over the past 40 years and will slowly increase over the next 35 years. Ningbo’s city center and district centers are exposed to medium-to-highest RER, while the suburban areas are exposed to lowest-to-medium lower RER. Storm surges will lead to strong RER increases along the Ningbo coast, with the low-lying northern coast being more affected than the mountainous southern coast. RER at Ningbo is affected principally by the combined effects of increased human activity, rapid population growth, rapid industrialization, and unprecedented urbanization. This study provides early warnings to support practical regulation for disaster mitigation and environmental protection.
               
Click one of the above tabs to view related content.