The evolution of in-use coal-fired power generators (CPGs) in China has been impelled by a series of policies called Developing Large Units and Suppressing Small Ones in recent decades. However,… Click to show full abstract
The evolution of in-use coal-fired power generators (CPGs) in China has been impelled by a series of policies called Developing Large Units and Suppressing Small Ones in recent decades. However, it remains highly uncertain about the contribution of the evolution on air pollution reductions at different stages. Models used to assess the effects of CPGs’ evolution often do not account for the different boundary conditions related to units composition and age structure of the existing CPGs, and lifetime expectancy, which hinders effective strategy development and realistic target setting. This study employs a dynamic Type-Cohort-Time (TCT) stock-driven model and Logarithmic Mean Divisia Index (LMDI) technique, to investigate the structural evolution of China’s CPGs as well as its environmental effects from 1980 to 2050. We consider generator-specific characteristics, lifetime-related issues and alternative techniques in the historical and scenario analysis. The main results are as follows: the environmental benefits of structural evolution were limited, compared with the changes in emission coefficient due to technical renovation. However, scenario analysis indicates that structural adjustment by elimination of outdated CPGs and construction of new ones in future will undertake emission reduction commitments, since the potentials of other approaches decrease. Uncertainty analysis further demonstrates that promoting elimination of small CPGs and substituting them with renewable energy will bring more emission reductions. The key findings can support policy-making on elimination, construction, and emissions abatement of CPGs.
               
Click one of the above tabs to view related content.