LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Study of a Li-Ion Cell Kinetics in Five Regions to Predict Li Plating Using a Pseudo Two-Dimensional Model

Photo from wikipedia

Detecting or predicting lithium plating in Li-ion cells and subsequently suppressing or preventing it have been the aim of many researches as it directly contributes to the aging, safety, and… Click to show full abstract

Detecting or predicting lithium plating in Li-ion cells and subsequently suppressing or preventing it have been the aim of many researches as it directly contributes to the aging, safety, and life-time of the cell. Although abundant influencing parameters on lithium deposition are already known, more information is still needed in order to predict this phenomenon and prevent it in time. It is observed that balancing in a Li-ion cell can play an important role in controlling lithium plating. In this work, five regions are defined with the intention of covering all the zones participating in the charge transfer from one electrode to the other during cell cycling. We employ a pseudo two-dimensional (P2D) cell model including two irreversible side reactions of solid electrolyte interface (SEI) formation and lithium plating (Li-P) as the anode aging mechanisms. With the help of simulated data and the Nernst–Einstein relation, ionic conductivities of the regions are calculated separately. Calculation results show that by aging the cell, more deviation between ionic conductivities of cathode and anode takes place which leads to the start of Li plating.

Keywords: ion cell; pseudo two; five regions; two dimensional; ion; cell

Journal Title: Sustainability
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.