Tropical cyclone (TC) translation speed is an important parameter. In the context of TC–ocean interaction, faster translation speed can contribute to less TC-induced ocean cooling and thus enables more air–sea… Click to show full abstract
Tropical cyclone (TC) translation speed is an important parameter. In the context of TC–ocean interaction, faster translation speed can contribute to less TC-induced ocean cooling and thus enables more air–sea enthalpy flux supply to favor TC intensification. In 2018, Kossin published an interesting paper in Nature , reporting a global slow-down of TC translation speed since the 1950s. However, upon close inspection, in the last two decades, TC translation speed actually increased over the western North Pacific (WNP) and neighboring seas. Thus, we are interested to see which sub-region in the WNP and neighboring seas had the largest increase during the last two decades, and whether such increases contribute to TC intensification. Our results found statistically significant translation speed increases (~0.8 ms −1 per decade) over the South China Sea. Ruling out other possible factors that may influence TC intensity (i.e., changes in atmospheric vertical wind shear, pre-TC sea surface temperature or subsurface thermal condition), we suggest, in this research, the possible contribution of TC translation speed increases to the observed TC intensity increases over the South China Sea in the last two decades (1998–2017).
               
Click one of the above tabs to view related content.