LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Temporal–Spatial Distribution of Ecosystem Health and Its Response to Human Interference Based on Different Terrain Gradients: A Case Study in Gannan, China

Photo from wikipedia

The exploitation, utilization, and protection of land resources are some of the great social problems during the process of rapid urbanization in China. The status of land use directly affects… Click to show full abstract

The exploitation, utilization, and protection of land resources are some of the great social problems during the process of rapid urbanization in China. The status of land use directly affects ecosystem health (ESH). The evaluation of ESH and the spatial correlations between urbanization caused by human interference help us to analyze the influence of urbanization on ecosystems and also provide new insight into reasonable and scientific resource management. In this study, we evaluated the ESH of Gannan, in Jiangxi Province, China, based on ecosystem service values (ESV) and selected a series of indicators to detect the impact of urbanization on ecosystem health in 1990, 1995, 2000, 2005, 2010. and 2015. Remote sensing (RS) and the Geographic Information System (GIS) were used as processing tools to calculate basic data and to map the results based on different terrain gradients. The results show that ecosystem health suffered a downward trend from 1990 to 2015. Especially, the area proportion at an unhealthy level and average health (ave-health) level increased prominently, and the area of a well state decreased. Further, the results indicate that urbanization had a negative impact on ESH. The degree of a negative correlation increases with the process of urban sprawl. In addition, we found that from 1990 to 2015, the area proportion of a degraded level and unhealthy level was the highest on the first terrain gradient, and as the terrain gradient increased, this area proportion also decreased. However, the high interference region occupies a higher proportion in the lower terrain gradient. Consequently, the results could reveal the impact of urbanization on ecosystem health and could provide an even more effective service for a sustainable development.

Keywords: terrain; health; ecosystem health; human interference

Journal Title: Sustainability
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.