The integration of wind power as an alternative energy source has gotten much attention globally. In this paper, the Weibull distribution model based on different artificial intelligent algorithms and numerical… Click to show full abstract
The integration of wind power as an alternative energy source has gotten much attention globally. In this paper, the Weibull distribution model based on different artificial intelligent algorithms and numerical methods is used to evaluate the wind profile. The application of Weibull distribution in wind data assessment can be extensively found, but the methods applied for estimating the parameters still need improvement. Three artificial intelligent algorithms are presented as an alternative method for estimation of Weibull parameters, and an objective function is proposed through the concept of maximum distance metric. Its convergence was proven mathematically through its boundedness for all wind data types. The optimization methods based on the proposed objective function are compared with the conventional numerical approaches for Weibull parameter estimation. Two-year wind data from the site in the southern area of Pakistan has been used to conduct this analysis. Furthermore, this work provides an eloquent way for the selection of a suitable area, evaluation of parameters, and appropriate wind turbine models through real-time data for power production.
               
Click one of the above tabs to view related content.