LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Novel Hybrid Deep Neural Network Model to Predict the Refrigerant Charge Amount of Heat Pumps

Photo from wikipedia

Improper refrigerant charge amount (RCA) is a recurring fault in electric heat pump (EHP) systems. Because EHP systems show their best performance at optimum charge, predicting the RCA is important.… Click to show full abstract

Improper refrigerant charge amount (RCA) is a recurring fault in electric heat pump (EHP) systems. Because EHP systems show their best performance at optimum charge, predicting the RCA is important. There has been considerable development of data-driven techniques for predicting RCA; however, the current data-driven approaches for estimating RCA suffer from poor generalization and overfitting. This study presents a hybrid deep neural network (DNN) model that combines both a basic DNN model and a thermodynamic model to counter the abovementioned challenges of existing data-driven approaches. The data for designing models were collected from two EHP systems with different specifications, which were used for the training and testing of models. In addition to the data obtained using the basic DNN model, the hybrid DNN model uses the thermodynamic properties as a thermodynamic model. The testing results show that the hybrid DNN model has a prediction performance of 93%, which is 21% higher than that of the basic DNN model. Furthermore, for model training and model testing, the hybrid DNN model has a 6% prediction performance difference, indicating its reliable generalization capabilities. To summarize, the hybrid DNN model improves data-driven approaches and can be used for designing efficient and energy-saving EHP systems.

Keywords: ehp systems; charge amount; model; refrigerant charge; dnn model

Journal Title: Sustainability
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.