Controlling the life cycle of natural resources, from extraction within the design and the production of products to handling waste, is crucial to green growth and is a part of… Click to show full abstract
Controlling the life cycle of natural resources, from extraction within the design and the production of products to handling waste, is crucial to green growth and is a part of advancing a resource-efficient, circular economy where everything is fully utilised. One way of using resources more efficiently for a greener economy is to design a production process that takes cost and energy savings into account. From this point of view, the goal of the article is to create a causal description of sustainable woodworking—especially using renewable and non-renewable resources—in relation to changes in the concentration levels of CO2 in the atmosphere. After estimating the partial parameters, this model can be used to predict or simulate different CO2 concentration levels in the atmosphere—for example, based on the ratio of renewable to non-renewable sources. After a theoretical description, the subsequent practical goal is to identify the optimal settings of wood-milling process parameters for either minimising energy consumption per workpiece and unit variable costs or for maximising the overall customer benefit. For this purpose, a complete factorial design was used, and based on this, the consumption energy (direct cost) optimisation of the production process was supplemented by a profitable production calculation. The effect of reducing variability was verified using a statistical F-test. The impact of minimising energy consumption (economically expressed as the mean profit) was then validated using a Student’s t-test.
               
Click one of the above tabs to view related content.