In hot, arid regions on university campuses, students are more vulnerable to heat stresses than in street canyons in terms of function; however, the knowledge of the impact of built… Click to show full abstract
In hot, arid regions on university campuses, students are more vulnerable to heat stresses than in street canyons in terms of function; however, the knowledge of the impact of built environments on thermal performance is still lacking. In two summer and winter days, the shading effect of the existing urban trees pattern in a university campus in Egypt was examined to correlate their Sky View Factor (SVF) with the thermal environment, meteorology, Physiological Equivalent Temperature (PET), and Universal Thermal Comfort Index (UTCI). The ENVI-met model was used in order to assess meteorological parameters, followed by SVF calculation in the Rayman program. Meteorological field measurements validated the simulation model and measured the Leaf Area Index (LAI) of two native urban trees to model the in-situ canopies foliage. In summer, the results showed a significant direct impact of the SVF on mean radiant temperature (Tmrt), PET, and UTCI; however, the excessive shading by trees on materials with a low albedo and low wind speed could lead to a slight increase in air temperature. Meanwhile, in the winter, SVF did not affect the microclimatic variables, PET, or UTCI. The resulting insight into the correlation between SVF and Tmrt emphasizes the importance of urban trees in modifying the microclimates of already-existing university plazas.
               
Click one of the above tabs to view related content.