LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Optimization of Conventional and Green Vehicles Composition under Carbon Emission Cap

Photo from wikipedia

The CO2 emission of transportation is significantly reduced by the employment of green vehicles to the existing vehicle fleet of the organizations. This paper intends to optimize the composition of… Click to show full abstract

The CO2 emission of transportation is significantly reduced by the employment of green vehicles to the existing vehicle fleet of the organizations. This paper intends to optimize the composition of conventional and green vehicles for a logistics distribution problem operating under a carbon emission cap imposed by the government. The underlying problem involves product delivery by the vehicles starting from a single depot to geographically distributed customers. The delivery occurs within specified time windows. To solve the proposed problem, we design a hybrid metaheuristic solution based on ant colony optimization (ACO) and variable neighborhood search (VNS) algorithms. Extensive computational experiments have been performed on newly generated problem instances and benchmark problem instances adopted from the literature. The proposed hybrid ACO is proven to be superior to the state-of-the-art algorithms available in the literature. We obtain 21 new best-known solutions out of 56 benchmark instances of vehicle routing problem with time windows (VRPTW). The proposed mixed fleet model obtains the best composition of conventional and green vehicles with a 6.90% reduced amount of CO2 emissions compared to the case when the fleet consists of conventional vehicles only.

Keywords: carbon emission; green vehicles; composition; conventional green; problem

Journal Title: Sustainability
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.