LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Evaluation of the Potential Role of Bacillus altitudinis MT422188 in Nickel Bioremediation from Contaminated Industrial Effluents

Photo by aaronburden from unsplash

The incessant pervasiveness of heavy metals in the environment is one of the precursory factors of pollution. This research study was endeavored upon to investigate the bioremediation potential of a… Click to show full abstract

The incessant pervasiveness of heavy metals in the environment is one of the precursory factors of pollution. This research study was endeavored upon to investigate the bioremediation potential of a nickel (Ni)-resistant bacterial isolate, identified as Bacillus altitudinis MT422188, whose optimum growth parameters were demonstrated at pH 7, temperature 32 °C, and 1 mM phosphate. Minimal Inhibitory Concentration (MIC) and EC50 for Ni were observed to be 20 and 11.5 mM, respectively, whereas the cross heavy-metal resistance was discerned as Cu2+ (25 mM) > Zn2+ (15 mM) > Cr6+ (10 mM) > Pb2+ (5 mM) > Co2+ (8 mM) > Cd2+ (3 mM) > Hg2+ (0 mM). Ni biosorption studies by live and heat-killed bacterial cells were suggestive of Ni uptake being facilitated by an ATP-independent efflux system. A pilot-scale study displayed the effective removal of Ni (70 mg/L and 85 mg/L) at 4- and 8-day intervals, respectively. Moreover, chemotaxis and motility assays indicated the role of Ni as a chemoattractant for bacterial cells. The presence of Ni reduced the GR (0.001 ± 0.003 Ug−1FW), POX (0.001 ± 0.001 Ug−1FW), and SOD (0.091 ± 0.003 Ug−1FW) activity, whereas Sodium dodecyl sulphate—Polyacrylamide gel electrophoresis (SDS-PAGE) revealed the presence of metallothionein (60 kDa). Kinetic and isotherm studies suggested a pseudo second-order and Freundlich model to be better fitted for our study. The thermodynamic parameters (∆H° = 3.0436 kJ/mol, ∆S° = 0.0224 kJ/mol/K) suggested the process to be endothermic, spontaneous, and favorable in nature. FTIR analysis elucidated the interaction of hydroxyl and carboxyl groups with Ni. Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray Spectroscopy (EDS) demonstrated changes in the morphological and elemental composition of the bacterial cells, which affirmed their interaction with Ni during biosorption. In summary, our study concludes the efficient role of Bacillus altitudinis MT422188 in removing Ni from polluted industrial effluents.

Keywords: bacillus altitudinis; study; altitudinis mt422188; industrial effluents; role bacillus

Journal Title: Sustainability
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.