LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Plant Carbon Sources for Denitrification Enhancement and Its Mechanism in Constructed Wetlands: A Review

Photo by igorson from unsplash

Nitrogen pollution in water bodies is a serious environmental problem worldwide. Plant carbonsource (PCS) enhanced denitrification in constructed wetlands (CWs) for wastewater with low chemical oxygen demand to total nitrogen… Click to show full abstract

Nitrogen pollution in water bodies is a serious environmental problem worldwide. Plant carbonsource (PCS) enhanced denitrification in constructed wetlands (CWs) for wastewater with low chemical oxygen demand to total nitrogen (COD/N) has been one of the most exciting research topics. This paper summarized the related studies with VOSviewer software and found that the major interests were denitrification performance and mechanism in CWs. This article mainly focused on the PCSs’ characteristics, denitrification rate, the influences of key environmental and operational parameters, surface morphology variation, microbial community structure, and denitrification genes. Engineering prospects and existing problems were also introduced. PCSs’ degradation consumes DO and creates favorable conditions for denitrification. The COD/N of wastewater should be maintained at 4–5 by adding PCSs, thus improving denitrification performance and reducing nitrous oxide emission. Aerobic degradation, anaerobic fermentation, dissimilatory nitrate reduction to ammonium, and sulfate reduction processes may consume the carbon released by PCSs depending on the influent quality and environmental conditions. More attention should be paid to the reduction of greenhouse gases and emerging pollutants in CWs with PCSs.

Keywords: plant carbon; mechanism; denitrification; constructed wetlands

Journal Title: Sustainability
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.