Deep soil mixing has been widely used to construct subsurface barriers (cut-off walls) in contaminated sites for contamination containment. Non-invasive geophysical methods are promising for the characterization and assessment of… Click to show full abstract
Deep soil mixing has been widely used to construct subsurface barriers (cut-off walls) in contaminated sites for contamination containment. Non-invasive geophysical methods are promising for the characterization and assessment of such barriers. The aim of this study was to assess and compare the characterization performance of four geophysical methods (i.e., electrical resistivity tomography, ground-penetrating radar, seismic imaging, and the transient Rayleigh surface wave method) for a subsurface barrier built using soil-mixing technology. The electrical resistivity tomography results show that the overall resistivity of the stratum on the barrier wall increased markedly, and local defects such as pockets of clay appeared as low-resistance anomalies on the resistivity profile. In contrast, the ground radar method failed to make a reasonable evaluation of the quality of the barrier wall because the surrounding environment caused great noise interference. The seismic mapping method had a better performance when the lateral geological conditions were studied. It is also suggested that to improve the signal-to-noise ratio of the surface wave signal, a vibrator with stronger energy should be used, and if conditions permit, the surrounding vibration sources should be shut down during geophysical tests. It is therefore recommended that decision makers and engineers consider using a combination of geophysical methods to evaluate the quality of barrier walls. They should also pay close attention to the specific geological conditions of a survey area, such as the presence of saltwater layers and interference from nearby structures, in order to choose the most appropriate method.
               
Click one of the above tabs to view related content.